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Abstract
A novel method for constructing a nonlinear smectic layer function is outlined
and employed to construct free energy density functions for two theoretical
experiments involving cylindrically layered smectic A liquid crystals. Director
tilt on the boundaries is imposed and it is assumed that the layer normal a
and the director n are free to decouple. The free energy density functions
are minimized to reveal coupled differential equations which describe a and n.
Comments are made on cylindrical systems where splay energies are negligible.
Solutions are given and the results discussed.

PACS numbers: 61.30.−v, 61.30.Hn, 61.30.Dk

1. Introduction

Liquid crystals are anisotropic fluids made up of elongated molecules which have an average
molecular axis that aligns along a common direction in space which is usually denoted by the
unit vector n, called the director. Smectic liquid crystals are layered structures with a well-
defined interlayer distance. These layers may be described by a scalar function �, whereby
the layer normal is given by a = ∇�/|∇�|. There are many different types of smectic liquid
crystals, however this paper shall only concern smectic A. In equilibrium, smectic A liquid
crystals form locally equidistant parallel layers in which the director n is parallel to the local
unit layer normal a [5, 17]. However, in both equilibrium and non-equilibrium circumstances,
it is believed that the director n and the layer normal a may decouple [2, 3, 13, 14, 19].
This paper studies this decoupling in two theoretical experiments where cylindrically layered
smectic A liquid crystals have imposed director tilt on the boundaries.

To begin with in section 2, we provide a novel method for constructing a nonlinear form
of the smectic layer function � for Cartesian and cylindrical coordinates. This nonlinear layer
function is then used to calculate the free energy density for a smectic A liquid crystal in a
cylindrical domain, where the smectic layer normal a can decouple from the director n. This
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Figure 1. (a) A sample of cylindrically layered smectic A where the layer normal makes and angle
δ(r, z) with the r-direction in the rz-plane. (b) The corresponding scenario when the layer normal
makes an angle ϑ(r, θ) with the r-direction in the rθ -plane and the sample is confined across a
‘wedge’ with planar boundary plates separated by an angle α.

involves using the method of characteristics [9] to solve partial differential equations arising
from the condition a = ∇�/|∇�|.

Two theoretical situations, schematically described in figure 1, are studied. The first
theoretical experiment involves a cylindrically layered smectic liquid crystal bounded between
two glass plates at z = 0 and z = d, similar to the typical ‘bookshelf’ geometry in which the
planar smectic layers are perpendicular to parallel boundary plates. This get-up is described
in figure 1(a). The second situation, described in figure 1(b), involves a smectic liquid crystal
bounded by an infinite cylindrical wedge of angle α. We assume strong anchoring of the
director on the boundary plates in both theoretical experiments and also assume that the
smectic layers exhibit a fixed layer tilt on the boundary.

In section 3, equilibrium equations for the layer normal a and the director n are obtained
by minimizing the energy integral constructed for the two described situations. The energy
density used by Stewart [18, 19] and De Vita and Stewart [6] shall be employed here. This
elementary energy density is based upon the work of Auernhammer et al [2–4], E [7], Ribotta
and Durand [13] and Soddemann et al [14]. It takes the form

w = 1
2Ka

1 (∇ · a)2 + 1
2Kn

1 (∇ · n)2 + 1
2B0(|∇�| + a · n − 2)2 + 1

2B1(1 − (n · a)2), (1.1)

with the total bulk energy being given by

W =
∫

V

w dV, (1.2)

where V is the sample volume. In the above expression for the energy density, Kn
1 represents

the usual elastic splay deformation of the director n while Ka
1 is a measure of the bending of

the smectic layers; both Kn
1 and Ka

1 are positive elastic constants. The term B0 is related to
smectic layer compression and is an extended version of that which is known for smectic A,
based upon the results in [5, 7]. The fourth term is a measure of the strength of the coupling
between a and n with the positive constant B1 having dimensions of energy per unit volume.
We note that in an equilibrium situation this contribution to the energy is minimized when
the director and the layer normal are parallel. The last term is essentially B1(n × a)2, which
was first proposed by Auernhammer et al [2]. The energy density (1.1) is invariant under the
simultaneous changes in sign n → −n and a → −a, which is equivalent to invariance under
the simultaneous changes n → −n and ∇� → −∇�.

In sections 3.1 and 3.2, the equilibrium equations for both theoretical experiments are
solved numerically to obtain the two angles which define the layer normal and the director. It
is shown in section 3.1 that the situation described schematically in figure 1(a) is analogous to
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a planar-layered case [19] when layers of large radius are studied. A specific case where the
layer compression is assumed to be the driving force of the realignment of the director and
layer normal is then considered in section 4. Comments are made on the results obtained in
section 5. Specific mention is made on the form of the free energy density used and the scope
for further investigations on the smectic layer function and in turn the smectic layer normal.

2. Nonlinear layer functions

We present here a novel method for constructing a nonlinear form of the smectic layer function
� for Cartesian and cylindrical coordinates. In many previous cases, a linear form of the layer
function � is assumed with possible nonlinear components. For example, the layer function
given by � = x + u(x, y, z, t) would describe planar layers with a possible displacement of
the layers described by the term u(x, y, z, t), which could be nonlinear. Similar forms have
been used previously [5, 13 , 15–17]. Additionally, the layer function � = r + u(r, θ, z, t)

would describe cylindrical layers with some possible deformation u(r, θ, z, t). This form has
also been used previously [10, 22].

From a geometrical argument, the layer normal a and the layer function � are related by
the equation

a = ∇�

|∇�| . (2.1)

This equation provides us with, at most three partial differential equations relating the layer
function � and the layer normal a.

2.1. Cartesian case

Assume, for the moment, that we have a planar-layered smectic A under some stress which is
large enough to cause layer undulations. Here the layer normal and the director are assumed to
not be always coincident. We denote by δ the angle the layer normal makes with the z-direction
and ζ the angle the director makes with the z-direction. Assuming no y-dependence in the
angles which describe the vectors a and n, it follows that the layer normal and the director
would take the forms, respectively,

a = (sin(δ(x, z)), 0, cos(δ(x, z))), (2.2)

n = (sin(ζ(x, z)), 0, cos(ζ(x, z))). (2.3)

When ζ ≡ δ ≡ 0, we have the usual level sets of undisturbed planar-layered smectic A, i.e.
a ≡ n ≡ (0, 0, 1). However, as previously noted, a = ∇�/|∇�|, and so we may uncover the
following partial differential equations arising via (2.1) and (2.2), namely

�,x

|∇�| = sin(δ(x, z)), (2.4)

�,y

|∇�| = 0, (2.5)

�,z

|∇�| = cos(δ(x, z)). (2.6)

Of course, we immediately see from equation (2.5) that �,y ≡ 0, i.e. the layer function is
not dependent on the spatial variable y, which is to be expected since it was assumed that the
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layer normal was not dependent on y. Since cos (δ(x, z)) is expected to be nonzero (i.e. delta
not close to π/2) we can divide the right-hand side of equation (2.4) by the right-hand side
of equation (2.6). To maintain equality we divide the left-hand side of equation (2.4) by the
left-hand side of equation (2.6), which then reveals the relation

�,x

�,z

= sin δ

cos δ
. (2.7)

Employing this method forces the constraint �,z �= 0 (for 0 < δ < π/2), i.e. the layer function
� must at least be a function of the spatial variable z. This is to be expected physically and
hence we can continue to write the above partial differential equation in the form

�,x − tan(δ(x, z))�,z = 0, (2.8)

which can be solved using the method of characteristics given that we assume δ = δ(x). This
is a valid assumption in the planar-layered case as can be seen by the experimental work of
Elston [8] and the theoretical work of Stewart [18] where there is no z-dependence of the layer
normal across the layers (perpendicular to the layers). The solution to equation (2.8) is given
by

� = F

(
z +

∫ x

x0

tan δ(t)dt

)
, (2.9)

where F is an arbitrary function and x0 = x(0). Of course, care must be taken here since
the layer function must have dimensions of distance. It seems that while equation (2.9) is a
mathematical solution to the physical situation described by equations (2.1) and (2.2), it may
not necessarily be a physically realistic solution. For example, consider the case when there
is no variation to the layer structure, that is δ(z) = 0. We expect the layer function to be of
the form � = z. However, we find ourselves faced with the solution � = F(z) which, for
any function other than F(z) = z, would result in a surprising layer structure. Hence, it is
intuitive to write the layer function in the form

� = z +
∫ x

x0

tan δ(t) dt. (2.10)

This form for the layer function was first used by Stewart [19].
This technique can also be used to find a nonlinear form of the layer function in a

cylindrical domain, as illustrated in the following section.

2.2. Cylindrical case

We now consider a smectic A liquid crystal with cylindrical layers in two different situations,
as shown in figure 1. If the layer normal makes an angle δ(r, z) in the rz-plane, as shown in
figure 1(a), then the layer normal would take the form

a = (cos δ(r, z), 0, sin δ(r, z)), (2.11)

and emulating the procedure described in the previous section, the corresponding partial
differential equation for the layer function would be

�,z − tan(δ)�,r = 0. (2.12)

If the layer normal makes an angle ϑ(r, θ) with the radial direction in the rθ -plane, as shown
in figure 1(b), then the corresponding equations would be

a = (cos ϑ(r, θ), sin ϑ(r, θ), 0), (2.13)

�,θ − r tan(ϑ)�,r = 0. (2.14)
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The solutions to the partial differential equations given here can only be found by the method
of characteristics given that we assume dependence of only one variable in the angle which
describes the layer function. Following from [8], and the assumption made above, we assume
that all angles are dependent only on the variable which is parallel to the smectic layers, i.e.
ϑ = ϑ(θ) and δ = δ(z). The solutions to the partial differential equations (2.12) and (2.14)
are then given by, respectively,

� = F1

(
r +

∫ z

z0

tan δ(t) dt

)
, (2.15)

� = F2

(
r exp

∫ θ

θ0

tan ϑ(t) dt

)
, (2.16)

where F1 and F2 are arbitrary functions, z0 = z(0) and θ0 = θ(0). All of the above
formulations hold when δ = 0 (or ϑ = 0), even though the defining partial differential
equations do not. Similar systems of partial differential equations can be constructed when
the director and the layer normal are defined by two angles of rotation, see [21] for details.

3. Minimization of free energy

We shall now construct the free energy associated with the two situations described in figure 1.
Once constructed, we find in each case, two coupled ordinary differential equations. In the
first instance, where we consider the situation described in figure 1(a), the equations can
be manipulated at layers of large radius to emulate those found for a similar planar-layered
smectic A system [18]. The corresponding Euler–Lagrange equations are solved numerically
and comments are made on the solutions with respect to the planar-layered case. A similar free
energy and corresponding Euler–Lagrange equations are constructed for the system described
in figure 1(b). The equations are solved and comments are made on the solutions.

3.1. Layers in the rz-plane

We consider a cylindrically layered sample of smectic A liquid crystal confined between two
plates at z = 0 and z = d, where the smectic layer normal makes an angle δ(z) with the radial
coordinate in the rz-plane. We assume that the director makes an angle ζ(z) with the radial
direction in the rz-plane. Strong anchoring of the director will be supposed and therefore we
will set ζ to be the fixed angle ζ0 at the lower boundary z = 0 and −ζ0 at the upper boundary at
z = d. We expect the director angle to vary smoothly from ζ0 to −ζ0 due to the requirement of
minimization of splayed energy [8] and hence we expect ζ(d/2) = 0. It will also be assumed
that the smectic layers will exhibit a fixed layer tilt δ0 at z = 0 and −δ0 at z = d and the
further assumption is made that the layer tilt angle varies smoothly. A further discussion on
this assumption of the tilt of the smectic layers on the boundaries is made in section 5. These
assumptions are concurrent with the experimental findings of Elston [8] and the theoretical
investigations of Stewart [18] for planar-layered smectic liquid crystals.

The layer normal and layer function are given for this problem by equations (2.11) and
(2.16), respectively. The director can be written in the form

n = (cos ζ(z), 0, sin ζ(z)). (3.1)

5



J. Phys. A: Math. Theor. 41 (2008) 385205 A J Walker

Inserting equations (2.11), (2.15) and (3.1) into (1.1) results in the energy density

wA = 1

2
Ka

1

(
1

R
cos δ + δ,z cos δ

)2

+
1

2
Kn

1

(
1

R
cos ζ + ζ,z cos ζ

)2

+
1

2
B0 (sec δ + cos(ζ − δ) − 2)2 +

1

2
B1 sin2(ζ − δ), (3.2)

where the fixed number R is the radius of any particular layer being studied. Inserting (3.2)
into the Euler–Lagrange equations

∂w

∂ζ
− d

dz

(
∂w

∂ζ,z

)
= 0 (3.3)

∂w

∂δ
− d

dz

(
∂w

∂δ,z

)
= 0 (3.4)

results in the following two coupled ordinary differential equations:

Kn
1

(
1

R2
sin ζ cos ζ + ζ,zz cos2 ζ − ζ 2

,z sin ζ cos ζ

)
− B1 cos(ζ − δ) sin(ζ − δ)

+ B0(sec δ tan δ + cos(ζ − δ) − 2) sin(ζ − δ) = 0, (3.5)

Ka
1

(
1

R2
sin δ cos δ + δ,zz cos2 δ − δ2

,z sin δ cos δ

)
+ B1 cos(ζ − δ) sin(ζ − δ)

−B0(sec δ tan δ + cos(ζ − δ) − 2)(sec δ tan δ − sin(ζ − δ)) = 0. (3.6)

Introducing the variables

κ = Ka
1

Kn
1

, λ =
√

Kn
1

B0
, B = B1

B0
, z̄ = z

λ
, R̄ = R

λ
, d̄ = d

λ
,

(3.7)

allows us to non-dimensionalize the Euler–Lagrange equations so that they may be written as

(
1

R̄2
sin ζ cos ζ + ζ,zz cos2 ζ − ζ 2

,z sin ζ cos ζ

)
− B cos(ζ − δ) sin(ζ − δ)

+ (sec δ tan δ + cos(ζ − δ) − 2) sin(ζ − δ) = 0, (3.8)

κ

(
1

R̄2
sin δ cos δ + δ,zz cos2 δ − δ2

,z sin δ cos δ

)
+ B cos(ζ − δ) sin(ζ − δ)

− (sec δ tan δ + cos(ζ − δ) − 2)(sec δ tan δ − sin(ζ − δ)) = 0. (3.9)

This choice of non-dimensionalized variables has been chosen in-line with the work by Elston
[8] and Stewart [18] and incorporates a molecular length scale identified by de Gennes and
Prost [5]. The boundary conditions for these equations are set as

ζ(0) = ζ0, ζ(d̄) = −ζ0, δ(0) = δ0, δ(d̄) = −δ0, (3.10)

and it is intuitive from the symmetry of the sample to infer

ζ

(
d̄

2

)
= 0, δ

(
d̄

2

)
= 0. (3.11)
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Figure 2. Numerical solutions to equations (3.8), (3.9), (3.13) and (3.14) for the director angle ζ

for layers of varying radii R̄ and the parameter values d̄ = 1000, ζ0 = π/6, δ0 = π/18, B = 1
and κ = 1. As the solutions for ζ and δ almost coincide in the bulk of the sample, only the ζ

solutions are plotted here. The effects at the boundary for both angles can be seen for layers of
varying radii in figure 4 and for varying control parameters in figure 5. We note that the layer
normal and director are almost zero (i.e. like smectic A in equilibrium) for most of the bulk.

There are two control parameters for this problem, κ and B, which are dimensionless measures
of the relative elasticities and ratio of coupling to compression. First, we consider the case
R → ∞, i.e. when the cylindrical layers are locally planar. Here the energy density becomes

wA = 1
2Kn

1 ζ 2
,z cos2 ζ + 1

2Ka
1 δ2

,z cos2 δ + 1
2B0(sec δ + cos(ζ − δ) − 2)2 + 1

2B1 sin2(ζ − δ),

(3.12)

and the associated Euler–Lagrange equations in dimensionless form are

ζ,zz cos2 ζ − ζ 2
,z sin ζ cos ζ − B sin(ζ − δ) cos(ζ − δ)

+ (sec δ + cos(ζ − δ) − 2) sin(ζ − δ) = 0, (3.13)

κ(δ,zz cos2 δ − δ2
,z sin δ cos δ) + B sin(ζ − δ) cos(ζ − δ)

− (sec δ + cos(ζ − δ) − 2)(sec δ tan δ + sin(ζ − δ)) = 0, (3.14)

which are analogous equations to those proposed for planar smectic A liquid crystals in
planar layers [18]. Using the above planar-like equations, and the equations for cylindrical
layers of various radii, we solve numerically for given values of B, κ , ζ0, δ0, R̄ and d̄ using
the mathematics software package MAPLE [11] which uses a finite difference technique
with Richardson extrapolation (see [1] for further information on Richardson extrapolation).
Figure 2 shows solutions of equations (3.8) and (3.9) (for finite R̄) and equations (3.13) and
(3.14) (the planar case) for the angle which defines the director, ζ , when, for typical values
(see Elston [8] and Stewart [18]) d̄ = 1000, κ = 1, B = 1, ζ0 = π/6 and δ0 = π/18, for
varying magnitudes of R̄, as well as when R̄ → ∞. We choose this value of d̄ so that the
boundary layer phenomena can be clearly illustrated. For macroscopic samples, we would
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R =100
2

R =1,000
2

R =10,000
2

z=500

z=0

z=1,000

Smectic Planes

Figure 3. Schematic diagram of the results presented in figure 2. Here, we have presented a
cut-view of the sample in the rz-plane (θ ≡ 0). We note the chevron structure which arises due to
the imposed boundary conditions, which is more prominent for layers of small radius.

require d̄ > 106 which would only increase the complexity of the numerical problem and
would not provide further information on the boundary layer effects. As δ closely resembles
ζ in the central bulk of the sample (similar to the results in [18]) we omit its solution at this
stage and defer a discussion of the differences between these angles to the results below. We
see that for very large values of R̄, the sample closely resembles that of the planar-layered case
investigated in [18], that is, ζ and δ are close to zero across the bulk of the sample. However,
when the layers of lower radius are studied, the angles across the bulk quite far away from
zero. We note especially the shape of the solution at R̄2 = 10, which shows that the layer
normal angle ζ actually increases close to the boundary. As yet, it is unclear if this would
occur experimentally. It may be an indication that the dynamic theory is breaking down at
such a small value of the radius of the layer studied. We note that R̄2 = 10 indicates a layer
of radius around 10−9 m which is just below the common range for average smectic layer
thickness of 20–30 Å. Since the core radius of liquid crystals is usually estimated to be of the
order of molecular dimensions [17, p 113], we may assume that layers of radius R̄2 = 10 may
not exist in experimental conditions and therefore the solution for R̄2 = 10 may be considered
purely mathematical.

The results presented in figure 2 are sketched for clarity in figure 3. We note the chevron
structure of the smectic layers which arise due to the imposed boundary conditions and the
dependence of the radius. This provides evidence on the requirement that the layer normal
and the director must have a mathematical dependence on the radius r in addition to the spatial
variable z.

Figure 4 shows four comparison plots of the boundary layer phenomena for the planar-
layered case and when the layers of radii R̄2 = 10000, R̄2 = 1000, and R̄2 = 100 are
studied. The plots are over a log scale on [0, 500] to emphasize the features of the uncoupled
behaviour of δ and ζ . In all cases, ζ and δ first become close over a relatively small distance
of z̄ = 1–5. Nevertheless, it is clear that the layer normal and director do not get as close in
layers of small radius as they do for layers of large radius. The layer structure is seen to be
extremely dependent on the radius, as it gets close to the typical smectic A alignment (δ ≈ 0)

at very different values of z̄, for different values of R̄. Note in the R̄2 = 10 case that the
layer normal and director do not meet until midway through the bulk. They both settle in
the main part at angles greater than those imposed by the boundary conditions. Again, we

8
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(a) (b)

(d )(c)

Figure 4. Solutions to equations (3.8), (3.9), with the boundary conditions (3.10), for δ(z) (dashed
lines) and ζ(z) (solid lines) for the indicated values of the radius R̄ of the layers being studied.
The remaining parameters have been set as d̄ = 1000, ζ0 = π/6, δ0 = π/18, B = 1 and κ = 1.
The plots are over a log scale on [0, 500] to emphasize the features of the uncoupled behaviour of
δ and ζ . Discussion of observations can be found in the main text.

remark that this is unlikely to be a physical solution as layers of this magnitude may not exist
experimentally.

Figure 5 shows four comparison plots of the boundary layer phenomena when the material
parameters B and κ are altered. We note the dependence of the solutions upon the dimensionless
elastic control parameter κ . If κ is small, i.e. Kn

1 > Ka
1 , then the layer angle δ increases so

that the layer normal is parallel to the director. However, if κ is large, i.e. Ka
1 > Kn

1 , then the
layers remain fixed at their boundary states until the director has reoriented to be parallel to
the layer normal, they then both reorient to the equilibrium state δ = ζ = 0. The size of the
parameter κ also determines where the angles prefer to align to in the main of the bulk. Given
a large κ , the layers and the director prefer to settle in a tilted state quite far from ζ = δ = 0.
These results can be explained physically; when we consider a large κ then we are actually
considering that the layers are less free to move than the director, and vice versa. For small
values of B, i.e. B0 > B1, the director does not realign to be parallel to the layer normal until
further into the bulk. This can be related to the minimization of the coefficient of B0, i.e. the
minimization of (|∇�| + n · a − 2). For large values of B, the angles defining the director and
layer normal are forced to become closer.

Using the information supplied in the numerical solutions to the Euler–Lagrange
equations, we can find the integrated angle of inclination across the domain wall, wd , for
smectic layers at different radius. The domain walls are centred at z̄ = 500 and we consider
the difference in the values of ζ (or δ) at the positions z = d/4 and z = 3d/4. Figure 6 shows

9
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(a) (b)

(d)(c)

Figure 5. Solutions to equations (3.8), (3.9), with the boundary conditions (3.10), for δ(z) (dashed
lines) and ζ(z) (solid lines) for the layers of radius around R̄2 = 1000 and indicated values of the
control parameters B and κ . The remaining parameters have been set as d̄ = 1000, ζ0 = π/6 and
δ0 = π/18. Discussion of observations can be found in the main text.

Figure 6. Plot and fitting curve of the integrated angle of inclination across the domain wall as a
function of the radius of the layers begin investigated. We see that this angle can be estimated to
a very good accuracy (the chi-squared test resulting in a p value of ≈0.06) by a simple function
given by equation (3.15).

10



J. Phys. A: Math. Theor. 41 (2008) 385205 A J Walker

(a) (b)

(d)(c)

Figure 7. Solutions to equations (3.8), (3.9), with the boundary conditions (3.10), for δ(z) (dashed
lines) and ζ(z) (solid lines) for the layers of radius around R̄2 = 1000 and indicated boundary
values. The remaining parameters have been set as d̄ = 1000, B = 1 and κ = 1. Discussion of
observations can be found in the main text.

the result of this analysis. We see quite clearly using a fitting program [12] that the length of
the domain wall can be estimated to a very good accuracy (the chi-squared test resulting in a
p value of ≈0.06) by the following simple ratio of powers:

wd ≈ abR̄2(1−c)

1 + bR̄2(1−c)
, (3.15)

where

a = 1465.359 87 ± 201.04847, b = 0.000 95 ± 0.00011, c = 0.477 99 ± 0.00453.

(3.16)

We see that at layers of small radius the domain wall width is very small and increases
in length as layers of larger radius are considered. It could be argued that for layers of small
radius, the imposed symmetry of the system is forcing the angles to reorient to zero in the
middle of the bulk, when they may not do so experimentally. It remains to be seen whether
or not this is the case, or indeed whether or not layers of such small radius could exist. It is
unclear at the moment if the form of equation (3.15) is coincidental or whether there exists
some underlying structure driving its form.

We investigate also what happens to the layers and the director when different boundary
conditions are applied. In figure 7 we consider the problem described above, and look at the
layers around R̄2 = 1000 when the layer normal boundary condition is fixed at ζ0 = π/6. Four
different boundary conditions are considered for the director: δ0 = π/6, δ0 = π/12, δ0 =
π/24 and δ0 = 0. We see in the first instance where δ0 = ζ0 = π/6, that even if the two
angles have the same boundary value, they decouple almost immediately, only to realign
within a relatively short distance from the boundary. This also occurs to some extent in the
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(a) (b)

(c)

Figure 8. Solutions to equations (3.8), (3.9), with the boundary conditions (3.10), for δ(z) (dashed
lines) and ζ(z) (solid lines) for the layers of radius around R̄2 = 1000 and indicated boundary
values. The remaining parameters have been set as d̄ = 1000, B = 1 and κ = 1. Discussion of
observations can be found in the main text.

planar-layered case when the boundary conditions are set to be equal. It is also noticeable that
the angles realign around the same value of z̄, no matter how far apart their boundary values
are.

Figure 8 tells a similar story with δ0 fixed with three different values of ζ0. In parts (a),
(b) and (c) we have set δ0 = π/6 and ζ0 = π/24, ζ0 = π/12 and ζ0 = 0, respectively. Similar
to the results seen from figure 7, the angles all realign around the same value of z̄. Numerical
calculations were made when δ0 = 0 and ζ0 = 0, as expected both angles remain fixed at their
boundary state.

3.2. Layers in the rθ -plane

Here we consider the situation described in figure 1(b), a cylindrically layered sample of
smectic A, confined between two glass plates at some angle α, where the layer normal makes
an angle ϑ(θ) with the radial coordinate in the rθ -plane. We assume that the director makes
an angle ζ(θ) with the radial coordinate in the rθ -plane. Analogous to the previous case, we
shall assume a boundary at θ = 0 and another boundary at θ = α, for some fixed angle α.
Strong anchoring of the director will be supposed and therefore we shall set ζ to be the fixed
angle ζ0 at θ = 0 and −ζ0 at θ = α. It will also be assumed that the smectic layers will exhibit
a fixed layer tilt ϑ0 at θ = 0 and −ϑ0 at θ = α.

The layer normal and the layer function are given by equations (2.13) and (2.16). From
figure 1(b), the director can be written in the form

n = (cos ζ(θ), sin ζ(θ), 0). (3.17)

12
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We note here that we have an a priori restriction on both ϑ(θ) and ζ(θ) in that they must both
be 2π -periodic.

Using the form for the free energy of a smectic A liquid crystal with variable layers given
by equation (1.1), the free energy for this system can be written as

wA = 1

2R2
Kn

1 cos2 ζ(1 + ζ,θ )
2 +

1

2R2
Ka

1 cos2 ϑ(1 + ϑ,θ )
2

+
1

2
B0

(
exp

(∫ θ

θ0

tan ϑ(t) dt

)
sec ϑ + cos(ζ − ϑ − 2)

)2

+
1

2
B1 sin2(ζ − ϑ), (3.18)

where R is the radius of the layers being studied. Inserting (3.18) into the Euler–Lagrange
equations

∂w

∂ζ
− d

dθ

(
∂w

∂ζ,θ

)
= 0 (3.19)

∂w

∂ϑ
− d

dθ

(
∂w

∂ϑ,θ

)
= 0 (3.20)

results in the following two coupled ordinary differential equations in dimensionless form:

1

R̄2
(ζ,θθ cos2 ζ + sin ζ cos ζ(1 − (ζ,θ )

2)) − B sin(ζ − ϑ) cos(ζ − ϑ)

+ sin(ζ − ϑ)

(
exp

(∫ θ

θ0

tan ϑ(t) dt

)
sec ϑ + cos(ζ − ϑ) − 2

)
= 0, (3.21)

1

R̄2
κ(ϑ,θθ cos2 ϑ + sin ϑ cos ϑ(1 − (ϑ,θ )

2)) + B sin(ζ − ϑ) cos(ζ − ϑ)

−
(

exp

(∫ θ

θ0

tan ϑ(t) dt

)
sec ϑ + cos(ζ − ϑ) − 2

)

×
(

exp

(∫ θ

θ0

tan ϑ(t) dt

)
(sec2 ϑ + sec ϑ tan ϑ) + sin(ζ − ϑ)

)
= 0, (3.22)

where the variables

κ = Ka
1

Kn
1

, λ =
√

Kn
1

B0
, B = B1

B0
, R̄ = R

λ
(3.23)

have been utilized in order to non-dimensionalize. These equations are analogous to
equations (3.8) and (3.9). Note that for layers of large radius R̄, where the layers are
locally planar, elastic contributions are negligible. Unfortunately, due to the existence of
the exponential term, solutions to equations (3.21) and (3.22) are intractable. Nevertheless,
assuming the layer normal angle ϑ is small allows us to use the approximation

exp

(∫ θ

θ0

tan ϑ(t) dt

)
≈ 1. (3.24)

Consequently, the defining differential equations can be simplified to give

1

R̄2
(ζ,θθ cos2 ζ + sin ζ cos ζ(1 − (ζ,θ )

2)) − B sin(ζ − ϑ) cos(ζ − ϑ)

+ sin(ζ − ϑ)(sec ϑ + cos(ζ − ϑ) − 2) = 0, (3.25)
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Figure 9. Numerical solutions to equations (3.25) and (3.26) for the director angle ζ for layers of
varying radius R̄ and the parameter values α = π/4, ζ0 = π/6, ϑ0 = π/18, B = 1 and κ = 1. In
layers of large radius, which are locally planar, the director angle aligns to ζ ≈ 0 in the bulk, yet
at layers of small radius the orientation of the director from one boundary to the other is almost
linear.

1

R̄2
κ(ϑ,θθ cos2 ϑ + sin ϑ cos ϑ(1 − (ϑ,θ )

2)) + B sin(ζ − ϑ) cos(ζ − ϑ)

− (sec ϑ + cos(ζ − ϑ) − 2)((sec2 ϑ + sec ϑ tan ϑ) + sin(ζ − ϑ)) = 0, (3.26)

which can be solved in a similar manner to those in the previous section. Given the boundary
conditions

ϑ(0) = ϑ0, ϑ(α) = −ϑ0, ζ(0) = ζ0, ζ(α) = −ζ0, (3.27)

we solve numerically for given values of B, κ , ϑ0, ζ0 and a fixed range of values for R̄. The
wedge angle α shall not be varied and is set to be α = π/4. Figure 9 gives the solutions for ζ

and ϑ when ϑ0 = π/18, ζ0 = π/6, B = 1, κ = 1 and for varying values of the layer radius R̄.
We find that for layers of large radius R̄, which are locally planar, the director quickly realigns
to ζ ≈ 0 in the bulk. However, when layers of small radius are studied, the orientation of the
director from one boundary to another is almost linear. We also find that the layers try to align
themselves with the director. Consequently, layer tilt actually increases close to the boundary.
We see this effect is greater in layers of large radius. Since the layers attempt to realign to
have a layer normal parallel to the director, the layers also realign close to an equilibrium state
in the bulk and yet are forced into a linear orientation from one boundary value to the other at
low radius. A sketch of the solutions presented in figures 9 and 10 is given via figure 11. We
note that the angle which defines the layer normal actually increases close to the boundaries
before realigning close to zero in the main of the bulk.

Figure 12 shows four comparison plots of the boundary layer phenomena when the layers
of radii R̄2 = 10000, R̄2 = 1000, R̄2 = 100 and R̄2 = 10 are studied. It is clear that the layer
normal and director do not coalesce as readily in layers of small radius as they do for layers
of large radius. When layers of large radius are studied, we find that the layers reorient away
from the smectic A equilibrium state, in order to align with the director, before reorienting

14
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Figure 10. Numerical solutions to equations (3.25) and (3.26) for the layer tilt angle ϑ for layers
of varying radius R̄ and the parameter values α = π/4, ζ0 = π/6, ϑ0 = π/18, B = 1 and κ = 1.
Note how the radius of the layers affects the orientation on the layers. Layers of large radius,
which are locally planar, reorient to a typical smectic A formation much easier than layers of small
radius.

R=10 R=1,000

R=100

R=10,000

π/4

Figure 11. Sketch of the results presented in figures 9 and 10 where the dashed lines denote the
smectic layers and the short solid lines denote the director. Note the unusual behaviour of the
layers close to the boundaries.

towards the zero state. That is, the angle ϑ actually increases towards ζ0 to align with ζ before
decreasing with ζ to ϑ = ζ = 0. However, when layers of small radius are studied, the
layers remain fixed until the director reorients in line with them before reorienting towards the
equilibrium state.

Figure 13 shows four comparison plots of the boundary layer phenomena when the
material parameters B and κ are altered. We note the dependence of the solutions upon the
magnitude of both the elastic control parameter κ and the compression control parameter B.
It is clear from the figure that when κ is large, that is when Ka

1 > Kn
1 , the layer normal does

not tend to reorient towards the director. It only starts to reorient towards the equilibrium state
ϑ = 0 once the director angle ζ has dropped to ζ ≈ ϑ0. When κ is small, i.e. when Ka

1 < Kn
1 ,

the layer normal increases to align with the director before decreasing again towards ϑ = 0.
Again, this is physically understandable since large κ mean that the layers are less likely to
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(a) (b)

(d )(c)

Figure 12. Solutions for ϑ(θ) (solid lines) and ζ(θ) (dashed lines) for the indicated values
of the radius R̄ of the layers being studied. The remaining parameters have been set as
α = π/4, ζ0 = π/6, ϑ0 = π/18, B = 1 and κ = 1. Discussion of observations can be found in
the main text.

reorient than the director. We also note the dependence on the control parameter B: when B is
large, that is when B0 > B1, we find that the director orients towards the layer normal closer
to the boundary than it does when B = 1. This is physically understandable since if the layers
have a larger molecular compression then the director would be expected to attempt to realign
over a shorter distance.

4. Compression and coupling at large R

We now consider the case where the bulk free energy is of the form

wB = 1
2B0(|∇�| + a · n − 2)2 + 1

2B1(1 − (n · a)2), (4.1)

where B0 and B1 are defined earlier. This will allow us to determine the relative importance
and interplay between compression and coupling and can be viewed as looking at the sample at
very large R where the splay energies will be minimized. We again consider the two cylindrical
set-ups described in figure 1, without imposing director and layer tilt on any boundaries. This
new energy shall be minimized as before, and the resulting equations studied. We find, in both
cases, that the Euler–Lagrange equations result in one nonlinear equation in two unknowns,
the angles describing the orientation of the director and the layer normal. Bounds for the
director are then found via this governing equation. The analysis in this section is considered
in a more substantial context when a form for the layer function � is not imposed [20].
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(a) (b)

(d )(c)

Figure 13. Solutions for ζ(θ) (dashed lines) and ϑ(θ) (solid lines) for the layers of radius around
R̄2 = 1000 and indicated values of the control parameters B and κ . The remaining parameters
have been set as α = π/4, ζ0 = π/6 and ϑ0 = π/18. Discussion of observations can be found in
the main text.

We consider first the geometrical set-up described in figure 1(a), without the imposed
boundaries or director and layer normal tilt, i.e. we assume the layer normal, layer function
and director are given via the relations (2.11), (2.16) and (3.1). The energy density function
can then be written as

wB = 1
2B0(sec δ + cos(δ − ζ ) − 2)2 + 1

2B1 sin2(δ − ζ ), (4.2)

where we assume δ = δ(z) and ζ = ζ(z) as before. Employing the Euler–Lagrange equations
results in the governing equation

B0(sec δ + cos(δ − ζ ) − 2) sec δ tan δ = 0, (4.3)

given that δ(z0) = 0. It is clear that the trivial solution δ ≡ ζ ≡ 0 exists. However, we can
also find bounds on the angle δ which defines the orientation of the layer normal. Since B0 is a
nonzero constant, and assuming that δ �= ζ �= 0, equation (4.3) provides us with the condition

ζ = δ − cos−1(2 − sec δ). (4.4)

Hence, for ζ to be a real angle we are forced into the constraint −sec−1 3 � δ � sec−1 3. Of
course, values of δ which satisfy this constraint could possibly provide ζ such that ζ < −π/2 or
ζ > π/2 which would not make physical sense. If we consider ζ such that −π/2 < ζ < π/2
then δ must also satisfy the relation −π/2 < δ − cos−1(2 − sec δ) < π/2. Numerical
calculations show that δ must lie within the range −π/4 � δ � π/3, giving ζ in the range
−π/2 � ζ � 0.
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If we consider the geometrical set-up described in figure 1(b), without the imposed
boundaries or director and layer normal tilt, i.e. with layer normal, layer function and director
are given via the relations (2.13), (2.15) and (3.17). The energy density function can then be
written as

wB = 1

2
B0

(
sec ϑ exp

∫ θ

θ0

tan ϑ(t) dt + cos(ϑ − ζ ) − 2

)2

+
1

2
B1 sin2(ϑ − ζ ), (4.5)

where we assume ϑ = ϑ(θ) and ζ = ζ(θ) as before. Minimization of this free energy results
in the governing equation

2B0

(
sec ϑ exp

∫ θ

θ0

tan ϑ(t) dt + cos(ϑ − ζ ) − 2

)
sec ϑ tan ϑ exp

∫ θ

θ0

tan ϑ(t) dt = 0, (4.6)

given that ϑ(θ0) = 0. Neglecting the trivial solution ϑ ≡ 0 results in a condition analogous
to (4.4), and the statements which follow it can be repeated here.

5. Conclusions and discussion

In this paper, we have identified a technique for finding nonlinear forms of the layer function
� for smectic A liquid crystals in several geometrical set-ups. The general technique involves
assuming a form for the layer normal a, which is seen from geometrical considerations, and
then using the relation a = ∇�/|∇�| to construct a partial differential equation, or system of
equations, for �. In some circumstances, e.g. when the angle which defines the layer normal
is assumed to be dependent on only one variable (as seen in the experimental work by Elston
[8]), the partial differential equation can be solved using the method of characteristics to find a
nonlinear form for the layer function. This is of extreme importance as until now, many have
assumed a linear form.

A form for the free energy density of a smectic A liquid crystal with variable layers has
been taken from the literature [19] and used to construct the free energy for two situations of
cylindrically layered smectic A, when the layer normal is dependent on z and when the layer
normal is dependent on θ . The Euler–Lagrange equations for both scenarios are constructed
and studied. The problem considered where the layer normal is dependent on z is compared
with a planar-layered scenario studied previously [18].

When the layer normal is assumed to have dependence in the z-direction only, the Euler–
Lagrange equations are solved numerically, and compared to their planar-layered counterparts
in [18]. We see that for layers of large radius, i.e. when the cylindrical layers are locally
planar, the previous results of Stewart [18] are obtained. However, when a layer of finite
radius are studied, we see that the angles which determine the layer normal and the director do
not collapse to zero in the bulk. Instead, they remain mostly nonzero, but practically constant,
throughout the bulk. The boundary layer phenomena are also studied, we find that the layer
normal and the director are sensitive to changes in the radius and the control parameters κ

and B. Using the numerical data from the solution of the Euler–Lagrange equations, we also
calculate the integrated angle of inclination across the domain wall as a function of the radius
of the layers. We find that it can be approximated by a simple ratio of powers. Dependence of
the angles on the boundary conditions are also studied. We see that the angles always realign
around z = O(1) − O(10), apart from one case; when δ0 = ζ0 = 0 both angles remain fixed
on their boundary values throughout the full sample, as expected.

When the liquid crystal is confined to have smectic layers in a wedge of angle α (which
was not varied), and the layer normal is assumed to have dependence in the θ -direction only,
the Euler–Lagrange equations are studied. In a similar manner to the previous scenario, the

18



J. Phys. A: Math. Theor. 41 (2008) 385205 A J Walker

Euler–Lagrange equations are solved numerically and the results studied. We find once more
that the layer normal and the director and sensitive to changes in the radius and the two control
parameters κ and B. We find that the angles defining the director and the layer normal change
greatly as we study layers of variable radius. This suggests that for cylindrical samples of
liquid crystals, the layer normal and the director are functions of at least two variables, that is, a
variable which changes within the layers and one which crosses the smectic layers. Therefore
the assumption made by Stewart [18] for planar-layered smectic A, that the layer normal and
director should only be dependent on the variable which changes within the layers, should not
be used for cylindrically layered smectic A, unless only individual layers are to be studied.
If this assumption is not made for cylindrical samples then the method detailed in this paper
will not result in a nonlinear form of the smectic layer function, but an unsolvable partial
differential equation for it. Nevertheless, in making this assumption, we have managed to
construct, and solve, Euler–Lagrange equations for two situations and show the dependence of
the radius and the material parameters on the realignment of the layer normal and the director.

It can be seen in both theoretical experiments that there are apparent dependencies on
the radius. Some surprising results are made in the limiting case R̄ → 0. It may be the case
that for small R̄ the dynamic theory of Stewart [19] will not hold. This may be physically
relevant as it is doubtful that cylindrical layers of such small radius could exist in experimental
situations, and the liquid crystal may become an isotropic fluid in the centre of the sample. It
may be intuitive to define a minimum allowed radius for the formation of smectic layers as
considered in [22].

If the angles which define the director and layer normal are assumed to also have
dependence on two spatial variables then the forms discussed for the layer function in the
main body of the text may not be assumed. However, it is possible to construct a third Euler–
Lagrange equation, for the variations in � (which would then be a function of three spatial
variables), and solve numerically. Much added information on the form of the layer function
can be found [20] which will fuel debate on the form of the free energy density used here.

The case where the splay energy contributions to the bulk free energy are negligible is also
discussed briefly. This is physically relevant for layers of such large radius where the splay
energies are negligible in comparison to the compressional energy B0 and the coupling energy
B1, which are assumed to be roughly of the same order. We find, by minimizing the Euler–
Lagrange equations, bounds for the angles which define the orientation of the layer normal
and the director in the two cylindrical geometries studied. This analysis can be extended for
when a form for the layer function has not been assumed, that is, when the layer normal is
assumed to be a function of two spatial variables [20].

As mentioned previously, the elementary form for the free energy density used here was
taken from formulations elsewhere in the literature [18, 19]. However, it could possibly be
seen that this free energy is an elementary nonlinear construction of what may be a more
intricate nonlinear form. It is hoped that in the near future a more expansive fully nonlinear
free energy density could be constructed in order to test the nonlinear forms of the smectic
layer function contained in this paper and further work on the layer function � [20].

Finally, we have assumed in this paper that it is possible to set boundary conditions which
determine the form of the smectic layers, just as we can determine the form of the director on
the boundary. This cannot be achieved experimentally. However, this work could be extended
in a manner similar to the paper by De Vita and Stewart [6] where they determine equilibrium
configurations for planar-layered smectic A under strong and weak anchoring conditions for
the director and introduce conventional natural boundary conditions on the smectic layer tilt
rather than impose a prescribed layer tilt. The paper by De Vita and Stewart is a natural
progression of the paper by Stewart [18] (which invokes prescribed boundary conditions for
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the layer normal) and can therefore be utilized to progress the ideas contained within this
paper to solve for Euler–Lagrange equations without a forced layer tilt on the boundaries.
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